科技 > 人工智能 > 神经网络

深入探究深度学习、神经网络与卷积神经网络以及它们在多个领域中的应用

97人参与 2024-08-05 神经网络

目录

1、什么是深度学习?

2、深度学习的思想

3、深度学习与神经网络

4、深度学习训练过程

4.1、先使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练)

4.2、后自顶向下的监督学习(就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调)

5、卷积神经网络

5.1、卷积神经网络的历史

5.2、卷积神经网络的网络结构

5.3、关于参数减少与权值共享

5.4、一个典型的例子说明

5.5、训练过程

5.6、卷积神经网络的优点

6、深度学习的应用领域

7、深度学习的应用成果

7.1、计算机视觉领域

7.2、语音识别领域

7.3、自然语言处理及其他领域

8、深度学习总结

9、深度学习的未来


vc++常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...)icon-default.png?t=n7t8https://blog.csdn.net/chenlycly/article/details/124272585c++软件异常排查从入门到精通系列教程(专栏文章列表,欢迎订阅,持续更新...)icon-default.png?t=n7t8https://blog.csdn.net/chenlycly/article/details/125529931c++软件分析工具从入门到精通案例集锦(专栏文章正在更新中...)icon-default.png?t=n7t8https://blog.csdn.net/chenlycly/article/details/131405795c/c++基础与进阶(专栏文章,持续更新中...)icon-default.png?t=n7t8https://blog.csdn.net/chenlycly/category_11931267.html开源组件及数据库技术(专栏文章,持续更新中...)icon-default.png?t=n7t8https://blog.csdn.net/chenlycly/category_12458859.html       在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线,通过深度学习解决若干问题的案例越来越多。一些传统的图像处理技术也可以通过深度学习来获得更优异的效果,比如去噪、超分辨率和跟踪算法等。为了跟上时代的步伐,必须对深度学习与神经网络技术有所学习和研究。本文将介绍深度学习技术、神经网络与卷积神经网络以及它们在相关领域中的应用。

1、什么是深度学习?

       深度学习(dl,deep learning)是机器学习(ml,machine learning)领域中一个新的研究方向。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。 

       深度学习在搜索技术、数据挖掘、机器学习、图像识别与处理、机器翻译、语音识别、人机交互、医学影像分析、疾病诊断、金融风险评估、信用评级等多个领域都取得了很多成果。深度学习使机器能模仿人类的视听和思考等活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了长足的进步。

2、深度学习的思想

       假设我们有一个系统s,它有n层(s1,…sn),它的输入是i,输出是o,形象地表示为: i =>s1=>s2=>…..=>sn => o,如果输出o等于输入i,即输入i经过这个系统变化之后没有任何的信息损失,保持了不变,这意味着输入i经过每一层si都没有任何的信息损失,即在任何一层si,它都是原有信息(即输入i)的另外一种表示。我们需要自动地学习特征,假设有一堆输入i(如一堆图像或者文本),我们设计了一个系统s(有n层),通过调整系统中参数,使得它的输出仍然是输入i,那么我们就可以自动地获取得到输入i的一系列层次特征,即s1,…, sn。

       对于深度学习来说,其思想就是堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可。

3、深度学习与神经网络

神经网络算法详解 05:其他神经网络简介(dnn、cnn、rnn、dbn、gan等)_constant dripping wears the ...

       深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

       深度学习本身算是机器学习的一个分支,简单可以理解为神经网络的发展。大约二三十年前,神经网络曾经是机器学习领域特别火热的一个方向,但是后来确慢慢淡出了,原因包括以下几个方面:

       深度学习与传统的神经网络之间有相同的地方也有很多不同。

       二者的相同在于深度学习采用了神经网络相似的分层结构,系统由包括输入层、隐层(多层)、输出层组成的多层网络,只有相邻层节点之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个逻辑回归模型;这种分层结构,是比较接近人类大脑的结构的。


为了克服神经网络训练中的问题,深度学习采用了与神经网络很不同的训练机制。2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致,方法是:

       将除最顶层的其它层间的权重变为双向的,这样最顶层仍然是一个单层神经网络,而其它层则变为了图模型。向上的权重用于“认知”,向下的权重用于“生成”。然后使用wake-sleep算法调整所有的权重。让认知和生成达成一致,也就是保证生成的最顶层表示能够尽可能正确的复原底层的结点。比如顶层的一个结点表示人脸,那么所有人脸的图像应该激活这个结点,并且这个结果向下生成的图像应该能够表现为一个大概的人脸图像。wake-sleep算法分为醒(wake)和睡(sleep)两个部分:

4、深度学习训练过程

         深度学习训练过程有以下两步。

4.1、先使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练)

       采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,是和传统神经网络区别最大的部分(这个过程可以看作是feature learning过程)。具体的,先用无标定数据训练第一层,训练时先学习第一层的参数(这一层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层),由于模型capacity的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学习得到第n-1层后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数。

4.2、后自顶向下的监督学习(就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调)

       基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一步是一个有监督训练过程;第一步类似神经网络的随机初始化初值过程,由于dl的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果;所以deep learning效果好很大程度上归功于第一步的feature learning过程。

5、卷积神经网络

       卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。

       cnns是受早期的延时神经网络(tdnn)的影响。延时神经网络通过在时间维度上共享权值降低学习复杂度,适用于语音和时间序列信号的处理。

        cnns是第一个真正成功训练多层网络结构的学习算法。它利用空间关系减少需要学习的参数数目以提高一般前向bp算法的训练性能。cnns作为一个深度学习架构提出是为了最小化数据的预处理要求。在cnn中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征。这个方法能够获取对平移、缩放和旋转不变的观测数据的显著特征,因为图像的局部感受区域允许神经元或者处理单元可以访问到最基础的特征,例如定向边缘或者角点。

5.1、卷积神经网络的历史

       1962年hubel和wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。

       通常神经认知机包含两类神经元,即承担特征抽取的s-元和抗变形的c-元。s-元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。许多学者一直致力于提高神经认知机的性能的研究:在传统的神经认知机中,每个s-元的感光区中由c-元带来的视觉模糊量呈正态分布。如果感光区的边缘所产生的模糊效果要比中央来得大,s-元将会接受这种非正态模糊所导致的更大的变形容忍性。我们希望得到的是,训练模式与变形刺激模式在感受野的边缘与其中心所产生的效果之间的差异变得越来越大。为了有效地形成这种非正态模糊,fukushima提出了带双c-元层的改进型神经认知机。

       van ooyen和niehuis为提高神经认知机的区别能力引入了一个新的参数。事实上,该参数作为一种抑制信号,抑制了神经元对重复激励特征的激励。多数神经网络在权值中记忆训练信息。根据hebb学习规则,某种特征训练的次数越多,在以后的识别过程中就越容易被检测。也有学者将进化计算理论与神经认知机结合,通过减弱对重复性激励特征的训练学习,而使得网络注意那些不同的特征以助于提高区分能力。上述都是神经认知机的发展过程,而卷积神经网络可看作是神经认知机的推广形式,神经认知机是卷积神经网络的一种特例。

5.2、卷积神经网络的网络结构

       卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。

卷积神经网络的概念示范见上图,输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在c1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个sigmoid函数得到三个s2层的特征映射图。这些映射图再进过滤波得到c3层。这个层级结构再和s2一样产生s4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。

       一般地,c层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;s层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。

       此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。卷积神经网络中的每一个特征提取层(c-层)都紧跟着一个用来求局部平均与二次提取的计算层(s-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。 

5.3、关于参数减少与权值共享

       上面聊到,好像cnn一个牛逼的地方就在于通过感受野和权值共享减少了神经网络需要训练的参数的个数。那究竟是啥的呢?

       下图左:如果我们有1000x1000像素的图像,有1百万个隐层神经元,那么他们全连接的话(每个隐层神经元都连接图像的每一个像素点),就有1000x1000x1000000=10^12个连接,也就是10^12个权值参数。然而图像的空间联系是局部的,就像人是通过一个局部的感受野去感受外界图像一样,每一个神经元都不需要对全局图像做感受,每个神经元只感受局部的图像区域,然后在更高层,将这些感受不同局部的神经元综合起来就可以得到全局的信息了。这样,我们就可以减少连接的数目,也就是减少神经网络需要训练的权值参数的个数了。如下图右:假如局部感受野是10x10,隐层每个感受野只需要和这10x10的局部图像相连接,所以1百万个隐层神经元就只有一亿个连接,即10^8个参数。比原来减少了四个0(数量级),这样训练起来就没那么费力了,但还是感觉很多的啊,那还有啥办法没?

        我们知道,隐含层的每一个神经元都连接10x10个图像区域,也就是说每一个神经元存在10x10=100个连接权值参数。那如果我们每个神经元这100个参数是相同的呢?也就是说每个神经元用的是同一个卷积核去卷积图像。这样我们就只有多少个参数?只有100个参数啊!不管你隐层的神经元个数有多少,两层间的连接我只有100个参数啊!这就是权值共享啊。

       假如一种滤波器,也就是一种卷积核就是提出图像的一种特征,例如某个方向的边缘。那么我们需要提取不同的特征,怎么办,加多几种滤波器不就行了吗?对了。所以假设我们加到100种滤波器,每种滤波器的参数不一样,表示它提出输入图像的不同特征,例如不同的边缘。这样每种滤波器去卷积图像就得到对图像的不同特征的放映,我们称之为feature map。所以100种卷积核就有100个feature map。这100个feature map就组成了一层神经元。我们这一层有多少个参数了?100种卷积核x每种卷积核共享100个参数=100x100=10k,也就是1万个参数。见下图右:不同的颜色表达不同的滤波器。

       刚才说隐层的参数个数和隐层的神经元个数无关,只和滤波器的大小和滤波器种类的多少有关。那么隐层的神经元个数怎么确定呢?它和原图像,也就是输入的大小(神经元个数)、滤波器的大小和滤波器在图像中的滑动步长都有关!例如,我的图像是1000x1000像素,而滤波器大小是10x10,假设滤波器没有重叠,也就是步长为10,这样隐层的神经元个数就是(1000x1000 )/ (10x10)=100x100个神经元了。注意了,这只是一种滤波器,也就是一个feature map的神经元个数哦,如果100个feature map就是100倍了。由此可见,图像越大,神经元个数和需要训练的权值参数个数的差距就越大。

       需要注意的一点是,上面的讨论都没有考虑每个神经元的偏置部分。所以权值个数需要加1 。这个也是同一种滤波器共享的。
总之,卷积网络的核心思想是将:局部感受野、权值共享(或者权值复制)以及时间或空间亚采样这三种结构思想结合起来获得了某种程度的位移、尺度、形变不变性。

5.4、一个典型的例子说明

       一种典型的用来识别数字的卷积网络是lenet-5。当年美国大多数银行就是用它来识别支票上面的手写数字的。能够达到这种商用的地步,它的准确性可想而知。毕竟目前学术界和工业界的结合是最受争议的。

         那下面咱们也用这个例子来说明下。

lenet-5共有7层,不包含输入,每层都包含可训练参数(连接权重)。输入图像为32*32大小。这要比mnist数据库(一个公认的手写数据库)中最大的字母还大。这样做的原因是希望潜在的明显特征如笔画断电或角点能够出现在最高层特征监测子感受野的中心。

       我们先要明确一点:每个层有多个feature map,每个feature map通过一种卷积滤波器提取输入的一种特征,然后每个feature map有多个神经元。

       c1层是一个卷积层(为什么是卷积?卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音),由6个特征图feature map构成。特征图中每个神经元与输入中5*5的邻域相连。特征图的大小为28*28,这样能防止输入的连接掉到边界之外(是为了bp反馈时的计算,不致梯度损失,个人见解)。c1有156个可训练参数(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器,共(5*5+1)*6=156个参数),共156*(28*28)=122,304个连接。

       s2层是一个下采样层(为什么是下采样?利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息),有6个14*14的特征图。特征图中的每个单元与c1中相对应特征图的2*2邻域相连接。s2层每个单元的4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid函数计算。可训练系数和偏置控制着sigmoid函数的非线性程度。如果系数比较小,那么运算近似于线性运算,亚采样相当于模糊图像。如果系数比较大,根据偏置的大小亚采样可以被看成是有噪声的“或”运算或者有噪声的“与”运算。每个单元的2*2感受野并不重叠,因此s2中每个特征图的大小是c1中特征图大小的1/4(行和列各1/2)。s2层有12个可训练参数和5880个连接。

卷积和子采样过程如上所示,卷积过程包括:用一个可训练的滤波器fx去卷积一个输入的图像(第一阶段是输入的图像,后面的阶段就是卷积特征map了),然后加一个偏置bx,得到卷积层cx。子采样过程包括:每邻域四个像素求和变为一个像素,然后通过标量wx+1加权,再增加偏置bx+1,然后通过一个sigmoid激活函数,产生一个大概缩小四倍的特征映射图sx+1。

       所以从一个平面到下一个平面的映射可以看作是作卷积运算,s-层可看作是模糊滤波器,起到二次特征提取的作用。隐层与隐层之间空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。

      c3层也是一个卷积层,它同样通过5x5的卷积核去卷积层s2,然后得到的特征map就只有10x10个神经元,但是它有16种不同的卷积核,所以就存在16个特征map了。这里需要注意的一点是:c3中的每个特征map是连接到s2中的所有6个或者几个特征map的,表示本层的特征map是上一层提取到的特征map的不同组合。

       刚才说c3中每个特征图由s2中所有6个或者几个特征map组合而成。为什么不把s2中的每个特征图连接到每个c3的特征图呢?原因有2点。第一,不完全的连接机制将连接的数量保持在合理的范围内。第二,也是最重要的,其破坏了网络的对称性。由于不同的特征图有不同的输入,所以迫使他们抽取不同的特征。

       例如,存在的一个方式是:c3的前6个特征图以s2中3个相邻的特征图子集为输入。接下来6个特征图以s2中4个相邻特征图子集为输入。然后的3个以不相邻的4个特征图子集为输入。最后一个将s2中所有特征图为输入。这样c3层有1516个可训练参数和151600个连接。

       s4层是一个下采样层,由16个5*5大小的特征图构成。特征图中的每个单元与c3中相应特征图的2*2邻域相连接,跟c1和s2之间的连接一样。s4层有32个可训练参数(每个特征图1个因子和一个偏置)和2000个连接。

       c5层是一个卷积层,有120个特征图。每个单元与s4层的全部16个单元的5*5邻域相连。由于s4层特征图的大小也为5*5(同滤波器一样),故c5特征图的大小为1*1:这构成了s4和c5之间的全连接。之所以仍将c5标示为卷积层而非全相联层,是因为如果lenet-5的输入变大,而其他的保持不变,那么此时特征图的维数就会比1*1大。c5层有48120个可训练连接。

       f6层有84个单元(之所以选这个数字的原因来自于输出层的设计),与c5层全相连。有10164个可训练参数。如同经典神经网络,f6层计算输入向量和权重向量之间的点积,再加上一个偏置。然后将其传递给sigmoid函数产生单元i的一个状态。

       最后,输出层由欧式径向基函数(euclidean radial basis function)单元组成,每类一个单元,每个有84个输入。换句话说,每个输出rbf单元计算输入向量和参数向量之间的欧式距离。输入离参数向量越远,rbf输出的越大。一个rbf输出可以被理解为衡量输入模式和与rbf相关联类的一个模型的匹配程度的惩罚项。用概率术语来说,rbf输出可以被理解为f6层配置空间的高斯分布的负log-likelihood。给定一个输入模式,损失函数应能使得f6的配置与rbf参数向量(即模式的期望分类)足够接近。这些单元的参数是人工选取并保持固定的(至少初始时候如此)。这些参数向量的成分被设为-1或1。虽然这些参数可以以-1和1等概率的方式任选,或者构成一个纠错码,但是被设计成一个相应字符类的7*12大小(即84)的格式化图片。这种表示对识别单独的数字不是很有用,但是对识别可打印ascii集中的字符串很有用。

       使用这种分布编码而非更常用的“1 of n”编码用于产生输出的另一个原因是,当类别比较大的时候,非分布编码的效果比较差。原因是大多数时间非分布编码的输出必须为0。这使得用sigmoid单元很难实现。另一个原因是分类器不仅用于识别字母,也用于拒绝非字母。使用分布编码的rbf更适合该目标。因为与sigmoid不同,他们在输入空间的较好限制的区域内兴奋,而非典型模式更容易落到外边。

       rbf参数向量起着f6层目标向量的角色。需要指出这些向量的成分是+1或-1,这正好在f6 sigmoid的范围内,因此可以防止sigmoid函数饱和。实际上,+1和-1是sigmoid函数的最大弯曲的点处。这使得f6单元运行在最大非线性范围内。必须避免sigmoid函数的饱和,因为这将会导致损失函数较慢的收敛和病态问题。

5.5、训练过程

       神经网络用于模式识别的主流是有指导学习网络,无指导学习网络更多的是用于聚类分析。对于有指导的模式识别,由于任一样本的类别是已知的,样本在空间的分布不再是依据其自然分布倾向来划分,而是要根据同类样本在空间的分布及不同类样本之间的分离程度找一种适当的空间划分方法,或者找到一个分类边界,使得不同类样本分别位于不同的区域内。这就需要一个长时间且复杂的学习过程,不断调整用以划分样本空间的分类边界的位置,使尽可能少的样本被划分到非同类区域中。

       卷积网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对卷积网络加以训练,网络就具有输入输出对之间的映射能力。卷积网络执行的是有导师训练,所以其样本集是由形如:(输入向量,理想输出向量)的向量对构成的。所有这些向量对,都应该是来源于网络即将模拟的系统的实际“运行”结果。它们可以是从实际运行系统中采集来的。在开始训练前,所有的权都应该用一些不同的小随机数进行初始化。“小随机数”用来保证网络不会因权值过大而进入饱和状态,从而导致训练失败;“不同”用来保证网络可以正常地学习。实际上,如果用相同的数去初始化权矩阵,则网络无能力学习。

       训练算法与传统的bp算法差不多。主要包括4步,这4步被分为两个阶段:

5.6、卷积神经网络的优点

       卷积神经网络cnn主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。由于cnn的特征检测层通过训练数据进行学习,所以在使用cnn时,避免了显式的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

       流的分类方式几乎都是基于统计特征的,这就意味着在进行分辨前必须提取某些特征。然而,显式的特征提取并不容易,在一些应用问题中也并非总是可靠的。卷积神经网络,它避免了显式的特征取样,隐式地从训练数据中进行学习。这使得卷积神经网络明显有别于其他基于神经网络的分类器,通过结构重组和减少权值将特征提取功能融合进多层感知器。它可以直接处理灰度图片,能够直接用于处理基于图像的分类。

       卷积网络较一般神经网络在图像处理方面有如下优点: a)输入图像和网络的拓扑结构能很好的吻合;b)特征提取和模式分类同时进行,并同时在训练中产生;c)权重共享可以减少网络的训练参数,使神经网络结构变得更简单,适应性更强。

6、深度学习的应用领域

       深度学习是人工智能的重要领域之一,其应用领域广泛,包括但不限于以下方面:

7、深度学习的应用成果

       深度学习在搜索、数据挖掘、计算机视觉、机器学习、机器翻译、自然语言处理、多媒体学习、语音、个性化推荐等领域有着广泛地应用,并取得了很多应用成果。

7.1、计算机视觉领域

       香港中文大学的多媒体实验室是最早应用深度学习进行计算机视觉研究的华人团队。在世界级人工智能竞赛lfw(大规模人脸识别竞赛)上,该实验室曾力压facebook夺得冠军,使得人工智能在该领域的识别能力首次超越真人。

7.2、语音识别领域

        微软研究人员通过与hinton合作,首先将rbm和dbn引入到语音识别声学模型训练中,并且在大词汇量语音识别系统中获得巨大成功,使得语音识别的错误率相对减低30%。但是,dnn还没有有效的并行快速算法,很多研究机构都是在利用大规模数据语料通过gpu平台提高dnn声学模型的训练效率。

       在国际上,ibm、google等公司都快速进行了dnn语音识别的研究,并且速度飞快。

       国内方面,阿里巴巴、科大讯飞、百度、中科院自动化所等公司或研究单位,也在进行深度学习在语音识别上的研究。 

7.3、自然语言处理及其他领域

       很多机构在开展研究,2013年,tomas mikolov、kai chen、greg corrado、jeffrey dean发表论文efficient estimation of word representations in vector space建立word2vector模型,与传统的词袋模型(bag of words)相比,word2vector能够更好地表达语法信息。深度学习在自然语言处理等领域主要应用于机器翻译以及语义挖掘等方面。

       2020年,深度学习可以加速半导体封测创新。在降低重复性人工、提高良率、管控精度和效率、降低检测成本方面,ai深度学习驱动的aoi具有广阔的市场前景,但驾驭起来并不简单。

       2020年4月13日,英国《自然·机器智能》杂志发表的一项医学与人工智能(ai)研究中,瑞士科学家介绍了一种人工智能系统可以几秒之内扫描心血管血流。这个深度学习模型有望让临床医师在患者接受核磁共振扫描的同时,实时观察血流变化,从而优化诊断工作流。

8、深度学习总结

       深度学习算法自动的提取分类需要的低层次或者高层次特征。高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器,小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达。

       深度学习能够得到更好地表示数据的feature,同时由于模型的层次、参数很多,capacity足够,因此,模型有能力表示大规模数据,所以对于图像、语音这种特征不明显(需要手工设计且很多没有直观物理含义)的问题,能够在大规模训练数据上取得更好的效果。此外,从模式识别特征和分类器的角度,deep learning框架将feature和分类器结合到一个框架中,用数据去学习feature,在使用中减少了手工设计feature的巨大工作量(这是目前工业界工程师付出努力最多的方面),因此,不仅仅效果可以更好,而且,使用起来也有很多方便之处,因此,是十分值得关注的一套框架,每个做ml的人都应该关注了解一下。

       当然,deep learning本身也不是完美的,也不是解决世间任何ml问题的利器,不应该被放大到一个无所不能的程度。

9、深度学习的未来

       深度学习目前仍有大量工作需要研究。目前的关注点还是从机器学习的领域借鉴一些可以在深度学习使用的方法,特别是降维领域。例如:目前一个工作就是稀疏编码,通过压缩感知理论对高维数据进行降维,使得非常少的元素的向量就可以精确的代表原来的高维信号。另一个例子就是半监督流行学习,通过测量训练样本的相似性,将高维数据的这种相似性投影到低维空间。另外一个比较鼓舞人心的方向就是evolutionary programming approaches(遗传编程方法),它可以通过最小化工程能量去进行概念性自适应学习和改变核心架构。

      深度学习已经在许多领域取得了巨大很大的成功,如图像识别、自然语言处理和人工智能等。未来,深度学习将继续推动人工智能技术的发展,为人类带来更多的便利和创新。以下是深度学习未来的几个趋势:

总之,随着深度学习技术的不断发展和进步,我们可以期待它在各个领域带来更多的创新和改变。

(0)
打赏 微信扫一扫 微信扫一扫

您想发表意见!!点此发布评论

推荐阅读

神经网络应用场景——图像识别

08-05

高斯分布的神经网络应用

08-05

【NLP基础知识五】文本分类之神经网络文本分类、多标签分类

08-05

深度学习(6)--Keras项目详解(传统神经网络)

08-05

深入理解神经网络:BP神经网络、ANN、多层感知机、多层编码器和多层线性层

08-05

神经网络中容易出现的问题、原因以及解决措施

08-05

猜你喜欢

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论