25人参与 • 2026-01-11 • MsSqlserver
sqlglot是一个纯python实现的跨数据库sql处理工具集,集成了sql解析器、转译器、优化器和执行引擎四大核心模块。其设计理念基于统一的中间表示(ir),通过抽象语法树(ast)实现不同数据库方言的转换与优化。作为开源项目(apache 2.0协议),sqlglot已支持20+种数据库方言,包括mysql、postgresql、spark sql、hive、bigquery等,特别适用于需要处理多数据源的复杂场景。
date_format vs postgresql的to_char)、分页语法(limit/offset vs fetch first)、数据类型(varchar vs string)等实现各异| 角色 | 典型场景 |
|---|---|
| 数据库开发者 | 数据库迁移、存储过程重构、执行计划分析 |
| 数据分析师 | 多数据源联合分析、查询标准化、自动化报表生成 |
| 数据工程师 | etl管道优化、实时数据流处理、数据质量检查 |
| devops工程师 | sql性能监控、自动化审查、ci/cd流水线集成 |
| 安全工程师 | 敏感数据脱敏、访问控制、静态代码分析 |
pip install sqlglot[all] # 安装完整功能包(含所有方言支持)
环境配置建议:
import sqlglot
from sqlglot.dialects import mysql, postgres
# 设置全局默认方言
sqlglot.dialect = "mysql"
# 或针对特定会话设置
with sqlglot.dialect_context("postgres"):
# 此代码块内使用postgresql方言
pass核心方法:
parse_one(): 解析单个sql语句parse(): 解析多个sql语句(返回列表)to_ir(): 转换为中间表示(ir)示例:解析复杂查询
from sqlglot import parse_one
sql = """
with daily_metrics as (
select
date_trunc('day', event_time) as day,
product_id,
count(distinct user_id) as dau
from events
where event_type = 'click'
group by 1, 2
)
select
a.day,
a.product_id,
a.dau,
b.sales,
round(a.dau / b.sales, 2) as conversion_rate
from daily_metrics a
join (
select
date_trunc('day', order_time) as day,
product_id,
sum(amount) as sales
from orders
group by 1, 2
) b on a.day = b.day and a.product_id = b.product_id
where a.day > current_date - interval '7' day
order by conversion_rate desc
"""
ast = parse_one(sql)
print(f"ast节点数: {len(ast.find_all())}")
print(f"cte数量: {len(ast.args['with'].expressions)}")转译流程:
示例:mysql转bigquery
import sqlglot
mysql_sql = """
select
user_id,
group_concat(distinct product_id order by purchase_date separator ',') as products
from purchases
where status = 'completed'
group by user_id
having count(distinct order_id) > 3
"""
bq_sql = sqlglot.transpile(
mysql_sql,
read="mysql",
write="bigquery",
pretty=true
)[0]
print(bq_sql)输出结果:
select
user_id,
string_agg(distinct cast(product_id as string), ',' order by purchase_date) as products
from
purchases
where
status = 'completed'
group by
user_id
having
count(distinct order_id) > 3优化策略:
示例:优化多层嵌套查询
from sqlglot import parse_one, optimize
sql = """
select
a.department,
a.avg_salary,
(select avg(salary)
from employees
where department = a.department
and hire_date > date_add(current_date, interval -5 year)) as junior_avg
from (
select
department,
avg(salary) as avg_salary
from employees
group by department
) a
"""
optimized = optimize(
parse_one(sql),
schema={
"employees": {
"columns": ["id", "name", "department", "salary", "hire_date"],
"indexes": ["department", "hire_date"]
}
}
)
print(optimized.sql(pretty=true))优化后sql:
with anon_1 as (
select
department,
avg(salary) as avg_salary
from
employees
group by
department
)
select
a.department,
a.avg_salary,
(
select
avg(salary)
from
employees
where
department = a.department
and hire_date > date_add(current_date, interval -5 year)
) as junior_avg
from
anon_1 a核心类:
expression: 所有sql表达式的基类select: select语句构建器join: join操作构建器func: 函数调用构建器示例:构建动态漏斗分析
from sqlglot import exp, select, func
def build_funnel_query(events, date_column="event_date"):
query = select(
f"date_trunc('day', {date_column}) as day"
).with_alias("base_query")
for i, event in enumerate(events):
filter_expr = exp.condition(f"event_type = '{event['type']}'")
if "filters" in event:
filter_expr = filter_expr.and_(exp.condition(event["filters"]))
count_expr = (
exp.count(distinct=true)
.of(exp.column("user_id"))
.where(filter_expr)
.alias(f"step_{i+1}_count")
)
query = query.add(count_expr)
return (
query.from_("events")
.group_by("day")
.order_by("day")
.sql(dialect="snowflake")
)
funnel_steps = [
{"type": "page_view", "name": "页面访问"},
{"type": "add_to_cart", "name": "加入购物车"},
{"type": "checkout_start", "name": "开始结账"},
{"type": "purchase", "name": "完成购买", "filters": "status = 'success' and amount > 0"}
]
print(build_funnel_query(funnel_steps))实现方案:
示例:身份证号脱敏
from sqlglot import parse, transform, exp
def id_mask_transform(expression):
if isinstance(expression, exp.column) and expression.name == "id_card":
return exp.func(
"concat",
exp.literal.string("****"),
exp.func("substr", expression, 11, 4)
).alias("id_card")
return expression
sql = "select name, id_card, phone from users where age > 18"
ast = parse(sql)
transformed_ast = transform(ast, step=id_mask_transform)
print(transformed_ast.sql(dialect="mysql"))输出结果:
select name, concat('****', substr(id_card, 11, 4)) as id_card, phone from users where age > 18import sqlglot
from timeit import timeit
def compare_dialects(sql, dialects=["mysql", "postgres", "spark"]):
results = {}
for dialect in dialects:
try:
parsed = sqlglot.parse_one(sql)
generated = parsed.sql(dialect=dialect)
# 模拟执行时间(实际应连接数据库执行)
exec_time = timeit(lambda: parse_one(generated), number=100)
results[dialect] = {
"sql": generated,
"parse_time": exec_time,
"length": len(generated)
}
except exception as e:
results[dialect] = {"error": str(e)}
return results
query = """
select
user_id,
sum(case when event_type = 'click' then 1 else 0 end) as clicks,
sum(case when event_type = 'view' then 1 else 0 end) as views
from events
group by user_id
"""
print(compare_dialects(query))from sqlglot import parse_one
from collections import defaultdict
def analyze_sql_pattern(sql):
ast = parse_one(sql)
pattern_stats = defaultdict(int)
# 统计join类型
for join in ast.find_all(exp.join):
join_type = join.args.get("join_type", "inner").upper()
pattern_stats[f"join_{join_type}"] += 1
# 统计聚合函数
for func in ast.find_all(exp.func):
if func.name.upper() in ["sum", "avg", "count", "max", "min"]:
pattern_stats[f"agg_{func.name.upper()}"] += 1
return dict(pattern_stats)
complex_query = """
select
u.id,
u.name,
count(distinct o.order_id) as order_count,
sum(o.amount) as total_amount,
avg(o.amount) as avg_order_value
from users u
left join orders o on u.id = o.user_id
where u.status = 'active'
group by u.id, u.name
having count(distinct o.order_id) > 5
"""
print(analyze_sql_pattern(complex_query))pandas集成示例:
import pandas as pd
from sqlglot import parse_one
def sql_to_dataframe(sql, data):
ast = parse_one(sql)
# 实际实现需要解析ast并转换为pandas操作
# 此处仅为概念演示
if "select * from" in sql.upper():
return pd.dataframe(data)
elif "where" in sql.upper():
condition = sql.split("where")[1].split("group by")[0].strip()
# 简化处理,实际需解析条件表达式
filtered_data = {k: v for k, v in data.items() if eval(condition, {}, v)}
return pd.dataframe(filtered_data)
return pd.dataframe()
sample_data = {
"id": [1, 2, 3],
"name": ["alice", "bob", "charlie"],
"age": [25, 30, 35]
}
df = sql_to_dataframe("select name, age from sample where age > 28", sample_data)
print(df)from functools import lru_cache
from sqlglot import parse_one
@lru_cache(maxsize=1000)
def cached_parse(sql):
return parse_one(sql)
# 重复解析相同sql时将直接从缓存获取from sqlglot import exp
# 预定义常用表达式
common_expressions = {
"recent_7_days": exp.condition(
"event_time >= date_sub(current_date, interval 7 day)"
),
"active_users": exp.condition(
"last_active_date >= date_sub(current_date, interval 30 day)"
)
}
def build_query_with_patterns(base_sql, patterns):
ast = parse_one(base_sql)
for alias, expr in patterns.items():
ast = ast.with_cte(exp.cte(alias, exp.select().from_("dummy").where(expr)))
return ast.sql()from concurrent.futures import threadpoolexecutor
import sqlglot
def parallel_parse(sql_list, max_workers=4):
with threadpoolexecutor(max_workers=max_workers) as executor:
results = list(executor.map(sqlglot.parse_one, sql_list))
return results
large_sql_batch = ["select * from table{}".format(i) for i in range(100)]
parsed_asts = parallel_parse(large_sql_batch)sqlglot通过其模块化设计和强大的中间表示层,为sql处理提供了统一的解决方案。其核心优势包括:
未来发展方向:
对于数据团队而言,sqlglot不仅是技术工具,更是提升数据处理效率和质量的基础设施。通过合理利用其功能,可以显著降低跨数据库开发的复杂度,实现更高效的数据价值挖掘。
到此这篇关于sqlglot库全面解析的文章就介绍到这了,更多相关sqlglot库内容请搜索代码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持代码网!
您想发表意见!!点此发布评论
版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。
发表评论